Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 277-285, 2022.
Article in English | WPRIM | ID: wpr-939145

ABSTRACT

To investigate the adverse effects of clozapine on cardiovascular ion channels, we examined the inhibitory effect of clozapine on voltage-dependent K+(Kv) channels in rabbit coronary arterial smooth muscle cells. Clozapine-induced inhibition of Kv channels occurred in a concentration-dependent manner with an halfinhibitory concentration value of 7.84 ± 4.86 µM and a Hill coefficient of 0.47 ± 0.06.Clozapine did not shift the steady-state activation or inactivation curves, suggesting that it inhibited Kv channels regardless of gating properties. Application of train pulses (1 and 2 Hz) progressively augmented the clozapine-induced inhibition of Kv channels in the presence of the drug. Furthermore, the recovery time constant from inactivation was increased in the presence of clozapine, suggesting that clozapineinduced inhibition of Kv channels is use (state)-dependent. Pretreatment of a Kv1.5 subtype inhibitor decreased the Kv current amplitudes, but additional application of clozapine did not further inhibit the Kv current. Pretreatment with Kv2.1 or Kv7 subtype inhibitors partially blocked the inhibitory effect of clozapine. Based on these results, we conclude that clozapine inhibits arterial Kv channels in a concentrationand use (state)-dependent manner. Kv1.5 is the major subtype involved in clozapineinduced inhibition of Kv channels, and Kv2.1 and Kv7 subtypes are partially involved.

2.
Nutrition Research and Practice ; : 396-401, 2017.
Article in English | WPRIM | ID: wpr-51183

ABSTRACT

BACKGROUND/OBJECTIVES: In this randomized, placebo-controlled, double-blind study, we evaluated the antihypertensive effects of enzymatic hydrolysate from Styela clava flesh tissue in patients with type 2 diabetes mellitus (T2DM) and hypertension. SUBJECTS/METHODS: S. clava flesh tissue hydrolysate (SFTH) (n = 34) and placebo (n = 22) were randomly allocated to the study subjects. Each subject ingested two test capsules (500 mg) containing powdered SFTH (SFTH group) or placebo capsules (placebo group) during four weeks. RESULTS: In the SFTH group, systolic and diastolic blood pressure decreased significantly 4 weeks after ingestion by 9.9 mmHg (P < 0.01) and 7.8 mmHg (P < 0.01), respectively. In addition, the SFTH group exhibited a significant decrease in hemoglobin A1c with a tendency toward improvement in homeostasis model assessment of insulin resistance, triglyceride, apolipoprotein B and plasma insulin levels after 4 weeks. No adverse effects were observed in other indexes, including biochemical and hematological parameters in both groups. CONCLUSION: The results of our study suggested that SFTH exerts a regulatory, antihypertensive effect in patients with T2DM and hypertension.


Subject(s)
Humans , Antihypertensive Agents , Apolipoproteins , Aquatic Organisms , Blood Pressure , Capsules , Diabetes Mellitus, Type 2 , Double-Blind Method , Eating , Homeostasis , Hypertension , Insulin , Insulin Resistance , Plasma , Protein Hydrolysates , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL